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Class 9: The logic of null hypothesis testing 
(part 2)

Prof. Jon Sprouse 
Psychology



Quick recap 

(Fisher’s approach)
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The mathematical part of NHT
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The mathematical part of NHT has three steps:

Run an experiment to collect the observed data. Calculate a statistic from 
it, like the mean or a z-score.

1.

Assume that the null hypothesis is true, and generate all possible data 
sets that could arise (using the same sample size as your experiment). 
We summarize it as a distribution called the null distribution.

2.

data1 
data2 
data3 
…

Data 
Generator

(assumes H0)

Look up the probability of the observed data 
or data more extreme in the null 
distribution. This is a conditional probability.

3.

P(data | H0) =
observed data
generated data
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The logical part of NHT
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The mathematical part of NHT yields a conditional probability - the 
probability of obtaining the observed data or data more extreme under the 
assumption that the null hypothesis is true. We call this a p-value.

P(data | H0) =
observed data
generated data
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p-value =

The logical part of NHT interprets the p-value.

If p(data|H0), called the p-value, is sufficiently low, then you can conclude 
either: (i) the null hypothesis is incorrect, or (ii) a rare event occurred.

Interpreting p-values is actually a fairly philosophical act. We will 
start with Fisher’s philosophy, because he started NHT. His 
interpretation can be captured in a statement called Fisher’s 
disjunction (a disjunction is a statement with “or” in it):



Making decisions: 
The Neyman-Pearson approach to NHT
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Two approaches to NHT
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It turns out that there are two major approaches to NHT. They use the same 
exact math, so it is easy to think that they are identical. But they differ 
philosophically, so it is important to keep them separated.

Ronald Fisher was the first person to try to 
wrangle the growing field of statistics into a 
unified approach to hypothesis testing. His 
NHT was the first attempt. We have already 
seen the Fisher approach. For Fisher, p-
values are a measure of the strength of 
evidence against the null hypothesis.

Jerzy Neyman 
(1894-1981)

Egon Pearson 
(1895-1980)

Ronald A. Fisher 
(1890-1962)

Neyman and Pearson were fans of Fisher’s 
work, but thought he missed an important 
component - you must make a decision 
about whether to reject the null 
hypothesis or not. They sought to make the 
decision process as mathematically concrete 
as possible.



The Neyman-Pearson approach
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Our book adopts the Neyman-Pearson approach. So, now that we have seen 
the basics with Fisher’s approach, I want to lay out the N-P approach, and the 
concepts that it adds to NHT.

Jerzy Neyman 
(1894-1981)

Egon Pearson 
(1895-1980)

The fundamental addition is the idea of a 
decision. You must decide whether to reject 
the null hypothesis based on the p-value that 
you obtain. 

1. A decision criterion called the alpha level or alpha criterion.

This leads to a number of concrete additions 
to the NHT process for us. 

2. A definition of the types of errors that can arise: type I and type II.

3. A theory of the relationship between the alpha level and type I error rate.

(There are other additions, but we will wait until later in the course to add 
those.)



The alpha level 

(a criterion for your decision)
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Setting a criterion for the decision

9

The first concept that the N-P approach adds to NHT is a decision criterion. The 
decision criterion is called the alpha level or alpha criterion. It is typically 
chosen based on a p-value, and then converted to a critical test statistic value.
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If the test statistic for our sample is beyond (moving away from the mean) the 
critical value determined by the alpha level, we reject H0. 

If the test statistic for our sample is within (closer to the mean) the critical value 
determined by the alpha level, we fail to reject H0. 

reject H0fail to  
reject H0

Here I have set the alpha level to .05 
based on the convention in psychology to 
choose p=.05.  

The resulting critical value for the (one-
tailed) z-test is 1.645. I have marked it 
with a vertical line.



The consequences of your decisions 

(a theory of errors)
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Decisions can lead to errors
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There are two states of the world: the null hypothesis is either true or false.

You can never know if the null hypothesis is true or false. This actually follows 
from the philosophy of science and the problem of induction.

In the absence of certainty about the state of the world, all you can do is make 
a decision about how to proceed based on the results of your experiment. You 
can choose to reject the null hypothesis, or not.

This sets up four 
possibilities: two 
states of the world 
and two decisions.

This is when the null hypothesis is true, but you reject it.Type I Error: 

This is when the null hypothesis is false, but you fail to reject it.Type II Error: 

H0 is… True False

Rejected Type I error 
(false positive)

correct decision 
(true positive)

Not Rejected correct decision 
(true negative)

Type II error 
(false negative)

the state of the world
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Type I errors are worse than type II errors
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In a type I error, you conclude that there is something interesting going on (an 
effect in your experiment) when really there is nothing interesting going on (no 
effect). In other words, they lead you to postulate a more complex universe.

This is riskier because it wastes everyone’s time. If you think there is an effect, 
you will create a theory for it, and publish it. Others will spend time exploring 
that theory. It may take time and effort to notice that you were mistaken. 
Then it will take time and effort to conclusively prove it was a mistake.

Though we obviously want to minimize both types of errors if we can, 
scientists tend to consider type I errors to be riskier.

Type II errors are less risky. They are just you failing to notice something 
interesting. That is the default state of the world. You won’t write a paper. No 
one will know. It isn’t fun. But it doesn’t waste anyone’s time!

This is when the null hypothesis is true, but you reject it.Type I Error: 

This is when the null hypothesis is false, but you fail to reject it.Type II Error: 



The type I error rate

13

Imagine that you are going to run experiments over and over for the rest of 
your life. One thing you might want to know is the following: out of all of those 
experiments, how many are type I errors?

Neyman and Pearson had the following insight: Though we can never know if 
any individual result is an error or not (remember philosophy of science, we 
can never know!), we can try to minimize our long term type I error rate. This 
will allow us to say, for example, that we only expect 5% of our results to be 
errors over the long term. 

And they demonstrated that the way to do this is to select a decision criterion 
(the alpha criterion) and apply it consistently over the long term. If you select 
it appropriately (based on some math), you can control your type I error rate!

We can call this the type I error rate. If I said my type I error rate is .05, that 
is me saying that out of all the experiments that I am running, about 5% of 
them are type I errors.



The type I error rate is determined by the 
alpha level that you choose
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reject H0fail to  
reject H0

Here is the critical fact: For a single experiment with a single statistical test, 
if you choose an alpha level of X, then the type I error rate will be X.

Warning: Alpha always determines the type I error rate. But it is only equal 
to the type I error rate for individual tests. For situations where we do multiple 
tests at once, the relationship is more complicated (but still determined by a 
regular relationship between alpha and the type I error rate). We will see this 
later in the course in a section called “multiple comparisons”.

Here I have chosen an alpha of 
.05. So, my decision criterion is 
p=.05.

Because this is a single experiment 
with a single statistical test, this 
means that my type I error rate 
will be .05



Demonstration: alpha is the type I error rate
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Let’s simulate a very large number of experiments, as if we were repeating 
them over and over, and see that the type I error rate is the same as our 
chosen alpha level.

First, let’s simulate 100,000 experiments in 
which the null hypothesis is true. I’ll draw 
the results as a distribution. I’ll use z-scores 
to keep things simple! Remember, this is as 
if we ran 100,000 experiments in our life! 0
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Next, let’s identify all of the experiments in 
which a type I error occurs. Since we 
assumed that the null hypothesis is true, an 
error will occur in any experiment with a p-
value less than .05. Since we used z-scores, 
this will be any z-score beyond 1.645.
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Next, we can count the number of 
experiments in our lives with z values 
beyond 1.645. Notice that it is roughly .05! 
(It is a simulation, so it is not precise.)

4,931
100,000

= .049



Why is alpha equal to the type I error rate?
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The critical insight for understanding why this happens is that the large set of 
experiments that we simulated all assume that the null hypothesis is true.

This means that our 
distribution of lifetime 
experiments is actually 
equivalent to a null 
distribution!
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lifetime experiments null distribution
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So, when we select an 
alpha level of X (say, .05), 
we are also selecting the 
threshold in our 
distribution of lifetime 
experiments for 
determining type I errors.



The direction of the alternative hypothesis and 
the consequences for the probabilities 

(i.e., one-tailed versus two-tailed tests)
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The direction of the alternative hypothesis
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Though we do not study the alternative hypothesis directly, it does have some 
impacts on our methods. For example, if your alternative hypothesis has a 
specific direction, that will determine which tail of the null distribution counts 
as the critical region for your test. These are called one-tailed tests.

If your alternative hypothesis states that the mean of 
the sample will be larger than expected under the null 
hypothesis, the critical tail will be to the right. For z-
scores, this means the critical z will be positive!
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If you have a directional alternative hypothesis, you must respect the logic of 
it. You must only reject the null hypothesis with scores in the selected tail. If 
you get a score in the opposite tail, you must fail to reject the null hypothesis.

Of course, it is also possible to have an alternative 
hypothesis that the mean of the sample will be 
smaller than expected under the null hypothesis. In 
this case, the critical tail will be to the left. For z-
scores, this means the critical z will be negative!

5%

5%

reject 
H0

reject 
H0

fail to 
reject 
H0

fail to 
reject 
H0



Examples of directional hypotheses, and 
therefore one-tailed tests

19

H1 is that the mean of the sample will be higher than 
expected. Our IQ test study is a great example. Our 
H1 is that practicing the test will increase scores. So 
our sample z will be positive! So we look at the right 
tail of the distribution, and set a critical value to a z 
of 1.645
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If you have a directional alternative hypothesis, you must respect the logic of 
it. You must only reject the null hypothesis with scores in the selected tail. If 
you get a score in the opposite tail, you must fail to reject the null hypothesis.

5%

5%

reject 
H0

reject 
H0

fail to 
reject 
H0

fail to 
reject 
H0

H1 is that the mean of the sample will be lower than 
expected. Our vaccine study is a great example. Our 
H1 is that taking the vaccine will decrease scores. So 
our sample z will be negative! So we look to the left 
tail of the distribution, and set a critical value to a z 
of -1.645.



A non-directional alternative hypothesis
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It is also possible to specify a non-directional alternative hypothesis. This 
would say that the mean of the sample will be either larger or smaller than 
what is expected under the null hypothesis. These are called two-tailed 
tests.
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There are some things to notice about this:

2.5% 2.5%

First, this means that there are two 
critical regions. We have two critical 
values for dividing the distribution.

Second, we split the critical region 
between the two tails. If our desired 
alpha is .05 (therefore a type I error rate 
of .05), we place .025 in each tail.

Third, this split changes the critical 
values. The two-tailed critical values for 
p=.05 are -1.96 and +1.96.

-1.96 +1.96

In general, the critical values for a two-tailed test will always be larger in 
magnitude (higher number, regardless of sign) than the critical values for a 
one-tailed test.

reject 
H0

reject 
H0

fail to 
reject 
H0



Why do we split the probability between tails?
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The splitting of the probability between tails can be a little confusing. But it 
follows directly from the definition of a p-value and the rules of probability!
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p-value:

2.5% 2.5%

The probability of obtaining the observed value or a value that is 
more extreme. 

With a non-directional hypothesis, more extreme means either above the 
mean OR below the mean.

P(A or B):

-1.96 +1.96

P(A) + P(B)

The “or” rule of probability tells us that we 
must add together the probability of the 
two events.

Therefore, our p-value will be the sum of 
the probability in the two tails. If we want 
P(A or B) to be .05, that means choosing 
values that put .025 in P(A) and .025 in 
P(B)! So, we put .025 in each tail!

reject 
H0

reject 
H0

fail to 
reject 
H0
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This also means that the p-values we calculate 
from a given score are twice as large
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A related consequence of this is that the p-values for a two-tailed test will be 
twice as large as the p-values for a one-tailed test with the same score!

Let’s say we obtained a z-score of +1.96. 
With a one-tailed test, the probability of 
obtaining that score or one more extreme 
is .025. We can see this in Table A1 in our 
book or by using pnorm() in R. .025

.025

But with a two-tailed test, the 
probability of obtaining that score or one 
more extreme is .05. This is because we 
must add the probability from both tails 
because “one more extreme” also means 
a z-score less than -1.96.

.025

=.05
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One more example to drive it home
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Let’s say we obtained a z-score of +1.4. 
With a one-tailed test, the probability of 
obtaining that score or one more extreme 
is .08. We can see this in Table A1 in our 
book or by using pnorm() in R. .08

.08

But with a two-tailed test, the 
probability of obtaining that score or one 
more extreme is .16. This is because we 
must add the probability from both tails, 
which means adding the probability of a z-
score beyond -1.4.

.08

=.16



How to run a statistical test 

(The six concrete steps to running a test in the Neyman-Pearson 
approach.)

24



How to run a statistical test (N-P approach)
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State the null hypothesis and whether the alternative hypothesis is one-
tailed or two-tailed.

1. 

Select the statistical test and the alpha level.2. 

Select the sample size and the collect the data.3. 

Identify the critical values for the decision to reject the null hypothesis. 
(Remember that this depends on one-tailed versus two-tailed!)

4. 

Calculate the test statistic for the observed data.5. 

Make the statistical decision based on the test statistic and the critical 
values.

6. 



A really big question for NHT: 
Why focus on the null hypothesis instead of the 

alternative hypothesis?
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Falsification limits us
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The first thing to note is that we are working with falsification, not 
confirmation. So all we can do is reject one hypothesis at a time.

The second thing to note is that there are actually an infinite number of 
alternative hypotheses. For example, if you are measuring how many days a 
COVID vaccine lasts, possible alternative hypotheses are 1 day, 2 days, 3 
days… 1 month, 2 months, etc…

The third thing to note is that the null hypothesis is always the most likely 
hypothesis. Again, think about how many chemical compounds there are in the 
world. Millions? Billions? Only a few work as COVID vaccines. So for most 
compounds that one could test, the null hypothesis (0 days) would be true.

Given all of these, let’s think about what would happen if we focused on one 
alternative hypothesis for a new COVID vaccine. Let’s say that it protects for 
90 days. It would most likely be falsified. But there would still be an infinite 
number of other alternatives to test (91 days, 92 days, etc). And, we still 
wouldn’t even know if it works at all — most likely it does not (0 days) because 
most chemical compounds are not effective vaccines. 

For all of these reasons the null hypothesis is the most strategic first choice. 
We need to show that there is something interesting to study!



Math limits us too
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Remember that in order to calculate a p-value, we need to assume that the 
hypothesis that we want to falsify is true, and then either simulate or calculate 
a distribution of hypothetical results.

It is relatively easy to either simulate or calculate a distribution for the null 
hypothesis. The reason for this is that there is nothing particularly interesting 
going on. There is no effect. There is nothing. The variation that we see across 
samples is due to random variation. There is no specific data generation 
process going on to cause the variation.

But things are not so easy under an alternative hypothesis. If an alternative 
hypothesis is true, there is a specific process going on. We would need to 
understand that process in some amount of detail in order to generate the 
possible results. We can’t just assume that the distribution would be normal.

And, we’d have to do this for every new topic of study, and for every new 
experiment, because the specific processes will change from topic to topic. We 
couldn’t just have one set of distributions like we do for the null hypothesis.

This is not impossible to do. Modern Bayesian methods do something like this. 
But they rely on complicated assumptions and sophisticated computer 
simulations. NHT tries to do more with less!



A final important concept for NHT: 
What a p-value is and what a p-value is not
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False beliefs about p-values
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There are lots of other pieces of information about an experiment or 
hypothesis that scientists often want to know. And they are often probabilities. 

1. The probability of the null hypothesis being true: p(H0 | data)

2. The probability of your hypothesis of interest being true: p(H1 | data)

3. The probability of incorrectly rejecting the null hypothesis: p(sig. | H0)

4. The probability that you can replicate your results with a second        
    experiment: p(data2 | data1).

It is critical to realize that p-values are not any of these. Sometimes people 
falsely believe that they are, but that leads to errors in reasoning. The best 
way to avoid this pitfall is to memorize what a p-value is (the equation at the 
top). Then, whenever you find yourself wanting a different probability, write 
out both the p-value equation and the equation for the new probability, and 
see if they are the same!

A p-value is the probability of obtaining the observed data 
or data more extreme under the assumption that the null 
hypothesis is true. It is one specific piece of information.

p(data | H0)


